SCHMIDT CONSULTING

Simple Web Based Aquarium Controller

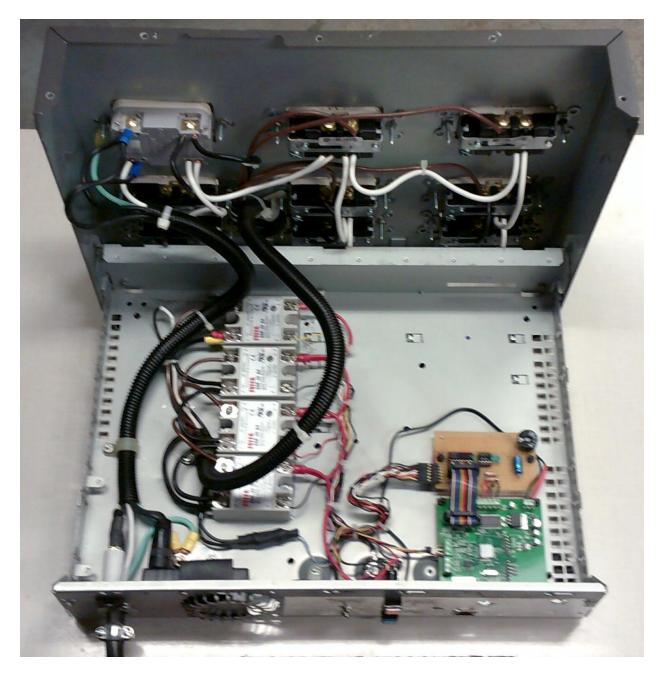
Tom Schmidt 1/9/2015 tom@tschmidt.com

We have several fresh water aquariums. Wanted to clean up the mass of cords and timers so used the same Web based PLC I've used before to perform lighting and heating control for two tanks.

Contents

Overview	
AC Power Distribution	
GFCI Power Line Optoisolator4	
Temperature Monitoring4	
Adapter Board5	
WebControl Pages	
Network Access5	
Operating Parameters	1
Email Notification7	
I/O Setup Page8	
Status Page8	
Appendix A – Schematic10	I
Appendix B – PLC Code	

Overview


We have several fresh water aquariums. The largest tank is 100 gallons along with several smaller tanks. I've had great success using CAI Networks WebControl PLC for other projects so thought the fish tanks would be a great additional project. Designed the controller so it is able to provide light and heat control for two independent tanks. In addition I incorporated GFCI protection to protect against electric shock.

In addition to my usual design practice of email notifications incorporated a visual and audible alert in the event of GFCI or temperature failure.

If the chassis looks familiar that is because it is recycled TiVo Series II. I've used TiVo chassis for several other projects. They are a good size and are well shielded. Removing the front plastic bezel exposes a solid metal panel, part of the lower chassis. Added rubber feet to what was normally the front panel so the controller may be laid flat or stood up on end.

Figure 1 Aquarium Controller

Figure 2 Controller Internals

AC Power Distribution


Power is supplied by 12 AWG power cord protected by a 15 circuit breaker. From there power is feed to the line side of a GFCI and to a 9V SMPS that powers the electronics. This way if the GFCI trips the controller remains on so it is able to send an alert email and provide audible/visual fault indication.

The output of the GFCI feeds additional always on receptacles for things like filter pumps. The GFCI protected feed then goes to four SSRs controlled by the PLC. GFCI status is monitored by a neon opto isolator. This provides input to the PLC that the GFCI has tripped.

GFCI Power Line Optoisolator

To allow the controller to monitor the state of the GFCI I built my own opto isolator consisting of a 120V neon pilot light assembly and a GL5516 Cds photo resistor. When exposed to light the Cds resistance drops to a low value. The off state is greater than 500k ohms and when illuminated by the neon light drops to about 1k.

I used heat shrink to attach the Cds cell to the front of the pilot light and prevent entry of extraneous light.

Figure 3 AC Optoisolator

Temperature Monitoring

The WebControl PLC supports Maxim/Dallas 1-wire 18B20 temperature sensors. The two tank sensors connect via 3-wire "stereo" 1/8" phone jacks. A third sensor is mounted on the WebControl board to report chassis temperature. I purchased 3 meter 18B20 waterproof cable assemblies on eBay so all I needed to do was attach the phone plug and label the sensor for tank 1 or 2.

1-wire sensors are individually serialized at manufacture allowing the system to identify individual sensors. I labeled each sensor with a tag indicating Tank 1 or 2. At power up the PLC identifies devices attached to the 1-wire bus and displays the serial number of each sensor. The Temperature Setup page is used to map each sensor to a specific identifier and select how readings are reported, Fahrenheit or Celsius. To determine which serial number relates to which sensor unplugged the two tank sensors, the remaining one was the built in temp sensor, then reconnected the tank sensors one at a time to add them to the controller.

		CAI	Web	Contr	ol PLC
Version: v03.02.18b5	IpAddress: 192.168.2.107	Name: AQUARIUM		01/08/2015	12:44:12
	Temper	ature Senso	r Setu	р	
System Status		Configured Sensors			
	Sensor	ROM Code	Units		
Output Control	T1	28184C670500 -	© °C ⊚ °F		
x10 Control	T2	284466670500 -	© °C ● °F		
I/O Setup	T3	28801E920500 -	© °C ⊚ °F		
	T4	00000000000 -	© °C ● °F		
Notify Setup	T5	00000000000 -	© °C ⊚ °F		
Temperature	T6	00000000000 -	© °C ● °F		
Sensor Setup	T7	00000000000 -	© °C ⊚ °F		
PLC Program	T8	00000000000 -	© °C ● °F		
General Setup Network Setup Help	<u> </u>	Send			

Figure 4 Temperature Sensor Configuration

Adapter Board

A small perf board is used to interface the WebControl to the system. A 7406 open collector buffer drives the SSR control input and the red fail light. A LM555 is used as a crude tone generator to drive a small speaker producing an annoying audible alert. The red fail indicator and audible alarm are driven by one of the PLC outputs. Firmware pulses the light/speaker in a 1sec on, 3 sec off pattern.

WebControl Pages

The WebControl user interface is pretty basic. One of the many projects on my to-do list is to create a more user friendly interface to the multiple controllers around the house. However in the meantime we are using the PLC barefoot.

Network Access

The Ethernet port is only 10 Mbps but as there is not much data flowing between the LAN and PLC that is not a serious limitation. The network interface may be configured as either DHCP or static. I typically set these controllers statically so their address is constant even if I change the LAN router. As mentioned set the NTP address to a local LAN based time server. Web pages can be configured to require log in credentials if desired and limited to specific IP addresses.

After a reset the static IP address is 192.168.1.15 and ID/Password set to admin/password. I normally connect my laptop directly to the controller to change the IP configuration and once configured connect it to the LAN. If needed there are a pair of reset terminals on the board to default the system back to factory defaults.

Operating Parameters

The four UROM values allow changing setting without messing with the firmware. There are two user settings for each tank, light on time and temperature. UROM1 and 2 are for tank 1 URMO3 and 4 for tank 2.

UROM 1 and 3 are set to an integer value between 0-15 to specify how long the light is on. If the value is greater than 0 the controller turns the light on at 6AM and off the specified number of hours later. I did not bother to set Daylight Savings Time on the controller, seemed like an unnecessary complexity.

The PLC supports Internet network time protocol (NTP) to automatically set time and date. Normally these values are obtained from an Internet server pool, such as: us.pool.ntp.org organized by the <u>NTP</u> <u>Pool Project</u>. In my case I'm running my own time server on the LAN using a program called: <u>Tardis</u> so instead of pointing the PLC to the Internet it obtains time from a local server. The advantage of this arrangement is even if we lose Internet connectivity time will still be set on the PLC.

The temperature setting monitors the respective 1-wire sensor to control the thank heaters. Internally the PLC computes temperate in .1 degree increments. To make setting the control point more convenient settings are done in one degree increments. User code simply multiples UROM value to 10. The control function includes 2 degrees of hysteresis. The PLC turns on the heaters if temperature falls below the set point by 1 degree and off when it exceeds set point by 1 degree. The mechanical thermostats on each tank heater are set a few degrees higher as a fail-safe.

		CAI	We	bContr	ol PLC
Version: v03.02.18b5	IpAddress: 192.168.2.107	Name: AQUARIUM		01/08/2015	12:40:45
	Ge	neral Setu	р		
System Status		Clock Setup			
Output Control		Time Zone utc-5 🗸			
I/O Setup		Date Time	4-55		
Notify Setup	Hote	Day Light Saving ON			
Temperature Sensor Setup		Options			
PLC Program	UROM1 8	User define	d 32 bit int		
General Setup	UROM2 80	User define	d 32 bit int		
Network Setup	UROM3 8	User define	d 32 bit int		
Нер	UROM4 80	User define	d 32 bit int		
	TDSO 3 - uS (1-Wir	re Data Sample Timing)			
	⊠Web Poll	ing Enabled			

Figure 5 Temperature and Lighting Settings

Email Notification

The PLC controller support up to 8 email messages. Beside the subject and message text the email includes most of the registers and temperature sensor data. Two emails are dedicated to UROM parameter checking. Firmware detects UROM value change and does a bounds check to see if new value is acceptable and sends the appropriate in range or out of range email with a list of valid parameters.

A third email is used for diagnostic purposes, it is sent at power up and if the GFCI trips or one of the temp sensors is reported as bad.

One item to note is this version of the WebControl supports email account authentication but not SSL/TLS encryption. This may be an issue as more and more ISPs and 3rd party email providers require SSL/TLS. Luckily my ISP does not.

Message ID	To Address	Message Subject	Message Body
EM1	tom@tschmidt.com	Aquarium System Status	VAR1 = 0 Power up = 1 Normal = 2 GFCI tripped = 3 Temp sensor
EM2	tom@tschmidt.com	Aquarium not used	
ЕМЗ		Aquarium not used	
EM4	tom@tschmidt.com	Aquarium UROMx Setpoint out of range	UROM updated, one or more values out of range. UROM1 Tank 1 light - = 0-15 (1hr
EM5	tom@tschmidt.com	Aquarium UROMx Setpoint within range	UROM updated, all values within range. UROM1 Tank 1 light = 0-15 (1hr
EM6	Ū	Aquarium not used	
EM7		Aquarium not used	
EM8		Aquarium not used	

Figure 6 Email Setup

I/O Setup Page

Some of the I/O can be configured to support multiple functions. In our case we are and not using any of the special function so configured Input 1 as a general purpose input. Also note Global PLC radio button is enabled. This allows PLC firmware to control I/O.

The Default output configuration enables both direct web browser and PLC access. To protect specific outputs from being manually changed by the browser uncheck the specific box. The way the aquarium controller code is written even if an output bit it changed by the browser it will quickly be reset the correct state. Leaving browser control enabled can be handy for debug to force an output change and monitor what happens.

			CAI	W	eb	Со	ntr	ol P	L
Version: v03.02.18b5	IpAddress: 192.168.2.107	Name: A	QUARIUM			01/08/2	2015	12:45:12	
		I/O S	etup						
System Status	☑ Global PLC Enable ☑ X10 Enable		-						
Output Control	© Counter Enable on TTL Inp								
x10 Control	 Frequency Measurement Er TTL Input 1 Enable 	nable On on TT	L Input 1						
I/O Setup	Т	TL Inputs							
Notify Setup	1	2 3 4	5 6	7 8					
Temperature	State Inverted								
Sensor Setup			TTL Out	nuts					1
PLC Program		1 2	3	4	5	6	7	8	
General Setup	Browser Control Enabled	v	V			V	V		
Network Setup	Plc Control Enabled		V				V		
Network Setup	State Inverted								
Help		Ĩ		i					
		Se	nd						

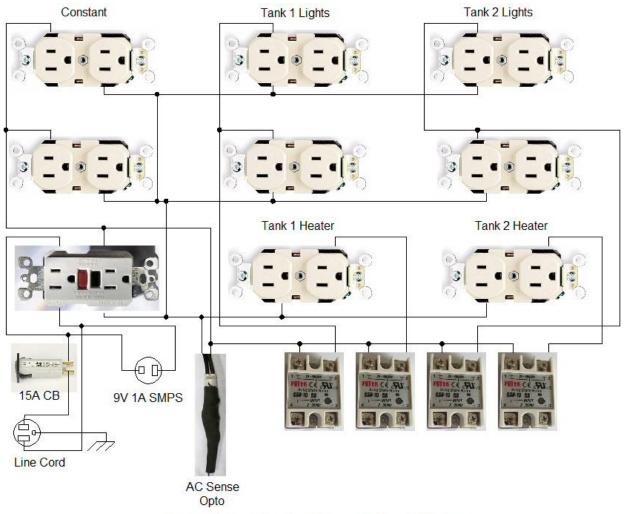
Figure 7 I/O Setup

Status Page

The default PLC page is the stats page. This displays current value of input/output bits, VAR registers and temperature. I did not install a humidity sensor so humidity is always reported as 0%.

Temperature 1, is tank 1, 2 is tank 2 and 3 is chassis

Output 1 is tank 1 light, 2 tank 1 heater, 3 tank 2 light, 4 tank 2 heater and 8 the fail alarm


Input 1 is GFCI status

VAR 1 is used as a system state register: 0, power up, 1 normal operation, 2 GFCI trip, 3 bad temp sensors

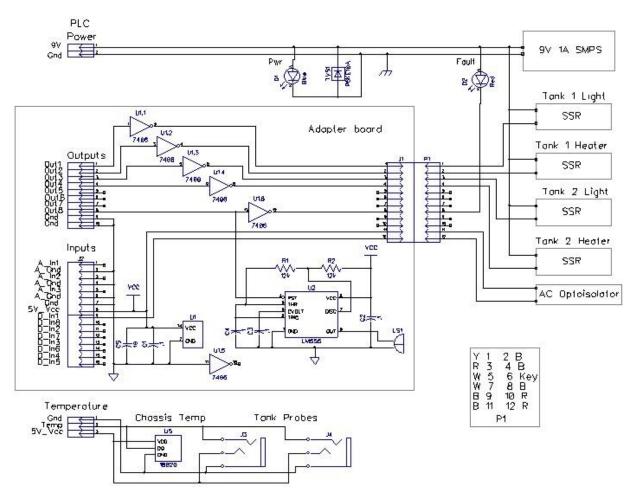

				(C	AI	W	eb(Cor	ntro	I P
Version: v03.02.18b5	IpAddress: 192.168.2.107	N	lame	: A(QU/	ARIUM		0	1/08/2	015 1	2:41:4
	Sy	st	en	1 :	S	tatu	IS				
System Status	Outp	uts									
Output Control	1 2	3	4	5	6	7	8				
x10 Control	TTL Output Bits 1 1	1	1	0	0	0	0				
I/O Setup	32 Bit Signed Vars 1 0	0	0	0	0	200	0				
Notify Setup				I	npu	its					
Temperature		1	2	3	3	4	5	6	7	8	
Sensor Setup	TTL Input Bits	1	0	0)	0	0	0	0	0	
PLC Program	Temperature Sensors	79.1 F	70.1 F	[76		unbound	unbound	unbound	unbound	unbound	
General Setup	Temperature Sensor Status	ok	ok	ol	kι	inbound	unbound	unbound	unbound	unbound	
Network Setup	Analog Inputs	0	0	0) [0	0	0	0	0	
Help	Humidity Sensor		0 %)							
	Counter		0								
	Frequency		0								

Figure 8 Status Page

Appendix A – Schematic

Aquarium Controller - Mains Wiring

Aquarium Controller - LV Interface

Appendix B – PLC Code

Aquarium Controller T. Schmidt

12/28/2014 Install

12/21/2014 Code start

11/23/2014 Project start

Customer loop executed every ~50ms VAR and RAM initialized to 0 by system To reset PLC - update Network settings WebControl takes about 400ms to init I/O at power up Per CAI Support Temp sensors take up to 2 sec to stabilize at power up Email takes about 1.5 sec to send. TTL inputs have 10k to ground pulldown Output buffer current 10mA per output, 30mA total

9V Power consumption

175ma PLC only (Live Ethernet serving web page) xxxma Through PLC, PLC & interface board xxxma Total 9V, PLC, i/f bd, 4-SSR on, audio alarm constant

Analog Inputs

AIP1 - not used AIP2 - not used AIP3 - not used

Digital Inputs

IP1 - AC Opto voltage sensor

IP2 -

IP3 -

IP4 -

IP5 -

IP6 -

IP7 -

IP8 -

Digital Outputs

OP1 - Tank 1 lights OP2 - Tank 1 heater OP3 - Tank 2 lights OP4 - Tank 2 heater OP5 -OP6 -OP7 -OP8 - Audible/visual alarm

Temperature Sensors

-----T1 - Tank 1

- T2 Tank 2
- T3 Chassis air
- T4 Not used
- T5 Not used
- T6 Not used
- T7 Not used
- T8 Not used

Temp Sensor status (1 = OK)

TS1 TS2 TS3 TS4 TS5 TS6 TS7

TS8

Humidity Sensor _____ H1 - Not installed Email message Identifiers -----EM1 - System Fail (Fail code in VAR1) EM2 -EM3 -EM4 - UROM value out of bounds EM5 - UROM value within bounds EM6 -EM7 -EM8 -Variables _____ VAR1 - Status mode 0=powerup, 1=normal, 2=GFCI trip, 3=Temp sensor fail VAR2 -VAR3 -VAR4 -VAR5 -VAR6 -VAR7 - Bad sys email GFCI/temp: 0=send email, 1-200 debounce, 201 email sent VAR8 -RAM ---RAM1 - Scratch RAM2 -RAM3 -RAM4 -RAM5 -RAM6 -RAM7 - Sum of current UROM values RAM8 -Web constants _____

UROM1 - Tank 1 light timer, 0-15 (0=off) 1hr increments UROM2 - Tank 1 temp 0-90F (0= off) 1F increments UROM3 - Tank 1 light timer, 0-15 (0=off) 1hr increments UROM4 - Tank 2 temp 0-90F (0= off) 1F increments

SYSCHK

Power up init, update VAR1 if GFCI trips or bad temperature sensor status Monitors 1-wire temp sensor status, debounces bad status. Email sent on either condition. Fail status automatically corrected if GFCI power back on or temp status OK

UROMCHG

Sums all 4 UROM values. Sends in bound or out of bound email once per change event and at power up. If any UROM is out of range all light and heat outputs set to off.

ALARM

Creates audible and visual alarm. On 1sec, off 3sec

TxLIGHT

Tank lighting. Off before 6AM. On for duration set by UROM1, tank 1 or UROM3 tank 2. If UROM set to 0 - light always off. If out of range that channel is ignored.

TxHEAT Tank heaters. Temp controlled +/- 1F around set point UROM2 tank 1, UROM4 Tank 2. If sensor fails output forced off. If out of range that channel is ignored.

START

CALLSUB	SYSCHK
CALLSUB	UROMCHG
CALLSUB	ALARM
CALLSUB	T1LIGHT
CALLSUB	T2LIGHT
CALLSUB	T1HEAT
CALLSUB	T2HEAT

END

SYSCHK:

TSTEQVAR1 UCALLSUSTRTDLYTSTEQIP1 0GOTOBADPUVTSTEQVAR1 2CALLSUGOODPURANDTS1 TS2 RAM1ANDTS3 RAUBZBADSEUSRSETVAR1 1SETVAR2 URETVAR3 U

STRTDLY:

JINIDL		
	EMAIL	EM1
	DELAY	10000
	SET	VAR1 1
	SET	VAR7 200
	ADD	UROM1 UROM2 RAM7
	ADD	UROM3 RAM7 RAM7
	ADD	UROM4 RAM7 RAM7
	CALLSU	B RANGECHK
	ΒZ	RANGEOK
	EMAIL	EM4
	SET	OP1 0
	SET	OP2 0
	SET	OP3 0
	SET	OP4 0
	RET	
RANGE	OK:	
	EMAIL	EM5
	RET	
RANGE	CHK:	
	TSTLT	UROM10
	RET	
	TSTGT	UROM1 15
	RET	
	TSTLT	UROM2 0
	RET	
	TSTGT	UROM2 90

RET TSTLT UROM3 0 RET TSTGT UROM3 15 RET TSTLT UROM4 0 RET TSTGT UROM4 90 RET RET

BADPWR:

SET VAR1 2 TSTEQ VAR7 201 RET VAR7 201 EMAIL EM1 RET

GOODPWR:

SET VAR1 1 SET VAR7 200 RET

BADSENSOR:

SET VAR1 3 TSTEQ VAR7 201 RET VAR7 0 RET VAR7 0 RET EMAIL EM1 SET VAR7 201 RET

UROMCHG:

ADDUROM1 UROM2 RAM1ADDUROM3 RAM1 RAM1ADDUROM4 RAM1 RAM1TSTEQRAM7 RAM1

RET SET RAM7 RAM1 CALLSUB RANGECHK BZ UROMOK EMAIL EM4 RET

UROMOK:

EMAIL EM5 RET

ALARM:

TSTGT VAR1 1 GOTO ALARMON SET OP8 0 RET

ALARMON:

ANDB CS 0x03 RAM1 TSTEQ RAM1 0 OP8 RET RET

T1LIGHT:

TSTLT UROM1 0 RET TSTGT UROM1 15 RET UROM1 15 RET CH 6 SET OP1 0 ADD 6 UROM1 RAM1 TSTLT CH RAM1 OP1 RET RET

T2LIGHT:

TSTLT UROM3 0 RET

TSTGT UROM3 15 RET TSTLT CH 6 SET OP3 0 ADD 6 UROM3 RAM1 TSTLT CH RAM1 OP3 RET RET T1HEAT: TSTLT UROM2 0 RET TSTGT UROM2 90 RET TSTEQ TS10 GOTO BADT1SENS SUB UROM2 1 RAM1 MUL RAM1 10 RAM1 TSTLE T1 RAM1 SET OP2 1 ADD UROM2 1 RAM1 MUL RAM1 10 RAM1 TSTGE T1 RAM1 BADT1SENS: SET OP2 0 RET T2HEAT: TSTLT UROM4 0 RET TSTGT UROM4 90 RET TSTEQ TS2 0 GOTO BADT2SENS SUB UROM4 1 RAM1 MUL RAM1 10 RAM1

 TSTLE
 T2 RAM1

 SET
 OP4 1

 ADD
 UROM4 1 RAM1

 MUL
 RAM1 10 RAM1

 TSTGE
 T2 RAM1

 BADT2SENS:
 SET

 SET
 OP4 0

 RET
 SET